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On strong-scaling and open-source tools for analyzing atom
probe tomography data
Markus Kühbach 1✉, Priyanshu Bajaj1,2, Huan Zhao1, Murat H. Çelik3, Eric A. Jägle1,4 and Baptiste Gault 1,5

The development of strong-scaling computational tools for high-throughput methods with an open-source code and transparent
metadata standards has successfully transformed many computational materials science communities. While such tools are mature
already in the condensed-matter physics community, the situation is still very different for many experimentalists. Atom probe
tomography (APT) is one example. This microscopy and microanalysis technique has matured into a versatile nano-analytical
characterization tool with applications that range from materials science to geology and possibly beyond. Here, data science tools
are required for extracting chemo-structural spatial correlations from the reconstructed point cloud. For APT and other high-end
analysis techniques, post-processing is mostly executed with proprietary software tools, which are opaque in their execution and
have often limited performance. Software development by members of the scientific community has improved the situation but
compared to the sophistication in the field of computational materials science several gaps remain. This is particularly the case for
open-source tools that support scientific computing hardware, tools which enable high-throughput workflows, and open well-
documented metadata standards to align experimental research better with the fair data stewardship principles. To this end, we
introduce paraprobe, an open-source tool for scientific computing and high-throughput studying of point cloud data, here
exemplified with APT. We show how to quantify uncertainties while applying several computational geometry, spatial statistics, and
clustering tasks for post-processing APT datasets as large as two billion ions. These tools work well in concert with Python and HDF5
to enable several orders of magnitude performance gain, automation, and reproducibility.
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INTRODUCTION
Precise and accurate quantification of uncertainties and the
significance of scientific results is essential for every study in
computational and experimental materials science. However, such
quantification is not only tedious but frequently also difficult in
practice and theory. Software tools accomplish here a critical task:
they encode theory and practice into methods, which ideally
everybody can use for analyzing computer simulations and
experiments. Data science tools, ideally automated, performant,
and linked into high-throughput workflows, have successfully
increased the complexity and type of materials science problems,
which a specific community can study. Prominent examples are
documented in the condensed-matter physics1–6. In contrast,
many software tools in experimental materials science are still at
an earlier stage of development, which is in part due to the
commercial interests of instrument vendors that lock data into
proprietary formats and that use often opaque data-processing
routines. In effect, this restricts the capabilities of such software
tools for performing uncertainty quantification and reduces the
effectiveness when exchanging results between computational
and experimental materials scientists.
Atom probe tomography (APT) is one such example where

open software tools and performant high-throughput analyses
would be valuable. APT is a destructive microscopy and
microanalysis technique, which allows the characterization of
specific microstructural features with near-atomic resolution in
three dimensions. Using either controlled laser or high-voltage
pulses superimposed on a DC high-voltage, APT relies on the
process of field evaporation to remove individual atoms from a

needle-shaped specimen in the form of ions. These are collected
by a position-sensitive time-resolved detector system7–10. The
time-of-flight of each ion allows for elemental identification with
isotopic resolution. The association of a range of mass-to-charge-
state-ratio values to a single element is usually referred to as
ranging11,12. Following elemental identification, a combination of
a reverse projection and a sequential depth-increment computa-
tion allows to reconstruct a point cloud; and thereby reveal the
original atomic arrangement of the specimen13. The capability to
resolve the atomic positions makes it possible to couple such
experiments with computer simulations at the atomic scale14.
Improvements in instrumentation and experimental protocols

in the past decade have made multi-million, as well as for some
materials even billion, atom datasets accessible. Inspecting for
instance the joint database for all APT microscopes of the MPIE
yields a list of 743 datasets (measured between January, 2016 and
February, 2020), which have all at least 100 × 106 ions collected.
Combining APT with other microscopy techniques, in particular
transmission electron microscopy15, results in a uniquely powerful
tool for advanced materials characterization. The range of
applications spans fields as diverse as physical metallurgy16,17,
geology and planetary chronology18–21, solar energy harvesting22,
biology23,24, or semiconductors25–27. Specimens in these fields
range from single-crystalline, single-phase chemistry to complex
multinary polycrystals with ten or more elements or amorphous
phases28–31. The range of materials amenable to APT analysis will
keep expanding in the coming years with new cryo-preparation
and transfer protocols being explored32–34.
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Post-processing of these APT data is a critical step in every
study. Examples include tasks like reconstructing a dataset from
the time-of-flight detector hit sequence7, characterizing spatial
statistics35, analyzing concentration fields and profiles36, charac-
terizing second-phase precipitates37–40, or reconstructing micro-
structural features with methods from computational geometry41–43.
A de facto near-monopolistic APT instrument landscape means

that the Integrated Visualization and Analysis Software (IVAS),
which is in the process of being replaced by APSuite, is an almost
mandatory starting point for most practitioners44,45. Benefits of
such commercial software packages are their clear integration into
the data-acquisition software of the instrument and the
functionally-rich graphical user interface (GUI). It should be
mentioned that many of the functions behind this GUI were
implemented based on methods which were developed by
members of the APT community. As a prototypic example of the
challenges, which experimentalists face, though, IVAS has two key
limitations: first, the raw data (of an APT measurement) are stored
in proprietary container files. Second, the source code is closed.
Therefore, quantifying eventual methodological uncertainties or
interfacing IVAS with other community tools remains tricky;
although the situation recently improved via scripting options
within IVAS46.
The situation motivated efforts by the APT community to

develop complementary scripts and software tools38,41–43,47–56.
That these tools are open is an advantage because it enables peer-
reviewing and continuous development by the scientific commu-
nity. Most of these community tools constitute proof-of-concept
implementations of algorithms or ad hoc developed patches of
functionalities that are missing in commercial software. With a
prime focus on serving as supplementary tools to support
particular research efforts, though, these tools provide usually
for sequential execution only.
In effect, practitioners are typically reluctant in setting up high-

throughput post-processing workflows. Consequently, gaps
remain on what constitutes metadata for APT, how to define
these through a community-driven process, and how to exchange
these and the data between different tools. This status quo
teaches us that additional challenges exist when analyzing
experiments in general and those for APT in particular. Therefore,
taking strategic action is necessary and can be rewarding when
using modern data science methods:

● Current experiments lead to the collection of larger datasets,
thanks to a wider field of view, a higher detection efficiency as
well as the increase in yield provided by laser-pulsing
capabilities.

● Stronger quality demands on the analyses and increasingly
more complex approaches are a reality as well in APT.

● Many individuals in the APT community see value in opening
up software and file formats in an effort to improve on the
documentation of the existing software. In addition, they also
see value in reporting more detail about the data-acquisition,
the post-processing methods, and the workflows that are used
in an effort to optimize the research process. Motivated by an
increasingly large part of the community it represents, the
International Field Emission Society set up a Technical
Committee that, in parts, oversees and helps coordinate these
actions.

● With the stronger permeation of machine learning and
artificial intelligence methods into a variety of fields, one
may argue that missing documentation or undisclosed data
reduce the speed at which new data analysis techniques can
be developed, tested for their effectiveness, and broadly
deployed.

● Journals and funding agencies are likely to start enforcing
stricter quality demands with respect to the curation of
experimental data.

One solution to cope with the above challenges is to improve
the documentation and curation of experimental data and make
these as comprehensive and automated tasks as possible. This
aligns with the goals of the FAIR research and data stewardship
principles6,57. The acronym FAIR stands for research which is
findable, accessible, and not only interoperable by humans and
machines, but also reproducible, or ideally even repurposable, for
applications in other research fields. Only concerted efforts across
the community could bring research in experimental materials
science closer to becoming compliant with the fair principles. This
will be rewarding because methods from scientific computing can
be better utilized and with this especially those manual
procedures reduced, which are prone to user errors. Examples
for this are the application of artificial intelligence tools, the here
discussed high-throughput analyses, scientific visualization, and
wizards for automated report writing.
Employing software parallelization, i.e., methods and tools from

scientific computing, is another solution to improve the efficiency
of APT data post-processing. Aware of the fact that not all readers
are familiar with scientific computing, we recap key concepts in
the supplementary methods. There are only a few examples that
have started to explore the above potential of using scientific
computing hardware and programming methods for APT58–61.
Maybe this situation has been caused by placing in the past a
stronger focus on addressing scientific questions, plus getting
funding for such is easier, rather than for questions on the
software tools for answering scientific questions in the experi-
mental materials science. In communities where most users are
not (yet) frequently trained in software engineering or data
science, this situation demands action. There are many advan-
tages to adapting or using scientific computing in APT research, as
we will see in the following.
We acknowledge that APT practitioners, like many other

experimental scientists, feel comfortable with using primarily
proprietary software. Yet many are open to do so in conjunction
with a box of highly performing, community-led tools, which
represents a versatile approach to tackle many of the challenges
discussed above. Scripting options through Python and Matlab
allow for assembling these tools into sophisticated workflows, as
we will show5,6 to align better with the fair principles. These tools
and workflows can in turn be interfaced with commercial
software45,46. In summary, we are convinced it is worthwhile to
develop APT software tools, which complement rather than
replace commercial software like IVAS. Furthermore, we should, as
a community aim for high-throughput analyzing and automation.
In this spirit, we contribute paraprobe. The software is our first

step towards open boxes of scientific computing tools for high-
throughput processing of point cloud data, here exemplified for
APT. Paraprobe currently does not allow to execute all the analysis
tasks that are implemented in typical commercial software, but
offers a platform on which more can be built. In addition, the
analyses that are implemented support hybrid parallelism for
computational geometry, spatial statistics, clustering, and atom
probe crystallography62. These are functionalities that are
currently not available within commercial software. Computational
and experimental materials scientists can learn from each other.
They face similar challenges when it comes to the development of
research software bottom-up by scientists and aligning such
software and descriptions of the data and metadata better with
the aims of the fair data stewardship principles. Intensifying the
interaction between the communities is beneficial because APT is
analyzing point cloud data, which accrue similarly as atoms or
material points in simulations at different length scales within
many computational materials science communities. Therefore,
this work can also inspire developers and users of specific point
cloud processing methods within the computational materials
science.
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RESULTS AND DISCUSSION
Application to experimental datasets
Delivering significant and substantiated quantitative descriptors
for answering materials science questions is the role of micro-
scopy and microanalysis techniques like APT. The specific role of
APT for answering materials science questions in alloy design is to
deliver quantitative data at the near-atomic scale about the spatial
distribution of solutes and thermodynamic phases, the number
density of such phases, their composition, their spatial arrange-
ment as well as their approximate volume and shape. Combined
with other microscopy techniques, this enables to unveil specific
physical mechanisms at the nanoscale and link these to the
thermo-mechanical evolution and the properties of materials.
With paraprobe, we have developed a box of high-throughput

tools for this. We show the benefit of these tools in typical
microstructure characterization studies within alloy design. Key
results of the first case study are reported in this section, while all
other details are reported in the supplementary methods,
including systematic benchmarks of the software. The tools are
offered as open-source software that are connectable into
customizable workflows using Python. The tools are supplemen-
ted by tutorials to help users with exploring the case studies in
more detail or taking these as a start for setting up analyses for
their own datasets.
We report the application of paraprobe in two case studies: one,

which is taken from additive manufacturing (AM) research on Al-
Sc-Si alloys, plus another one which is taken from alloy design of
an Al-Zn-Mg-Cu aerospace alloy. There are 13 specimens in total
for the first and seven specimens in total for the second case
study. Several reasons motivated working with these alloy
systems: Both are of interest for aerospace applications, in which
case material strength is a target property. Therefore, characteriz-
ing precipitates and solutes is of key interest. Both alloy systems
can also be seen as representative examples for different
challenges faced when quantifying the nanochemistry: Al-Zn-
Mg-Cu alloys display a mixture of nanoscale solute gradients in
the matrix and different precipitate phases, which challenge tasks
like clustering. Compared to classical aging treatments of
aluminum alloys, additively-manufactured material experiences a
different thermal treatment. Given that elements can have
different melting points and diffusion rates, this results in a
different thermo-chemo-mechanical evolution of precipitates in
AM-processed alloys. Al-Sc-Si is one example where the size of the
precipitates within even the same specimen can differ substan-
tially inasmuch as some precipitates qualify as coarse interme-
tallics, while some precipitates are so small that they are
practically not reliably resolvable with APT63. In effect, multiple
sources of inaccuracies have to be mastered when trying to
understand the early stages of precipitation using APT (finite
counting effects, effects of parameterization of the clustering
algorithm, and ambiguities whether the cluster is better described
at the atomic or the continuum scale, and which category of
precipitate does it represent best terminology-wise). In this regard,
the alloy systems can serve as examples how paraprobe can help
practitioners master these challenges via uncertainty
quantification.
Quantifying the distribution of the sizes and the number density

of second-phase precipitates are the sought-after descriptors in
the first case study. The link to computational materials science is
that these are two frequently used descriptors to calibrate and
benchmark kinetic models of precipitation thermodynamics at the
mesoscopic scale. Such task is typically achieved with clustering
methods. Here, we detail how such methods can be looped into
high-throughput workflows, exemplified for the maximum separa-
tion method (MS), a DBScan variant, which is still one of the most
frequently applied methods for studying precipitates in APT.
Figure 1 summarizes the results of characterizing the early stages

of forming Al3Sc precipitates via inspecting the spatial distribution
of scandium atoms and the distribution of precipitate sizes within
the specimens from the three investigated samples of the AM case
study. Different core point distances (dmax) were probed during
the maximum separation clustering study.
The results vary systematically, both qualitatively and quantita-

tively, with the prior thermal history of the samples studied. For
any one sample type, the results are fully consistent. For the
datasets from the incipient and the intermediate samples, Fig. 1a)
documents that a key assumption relevant to apply the MS
method is violated: the individual spatial distribution functions of
the atoms within clusters do not differ substantially from the
distributions of the matrix atoms38,64. This observation is
particularly evident for the 1NN distributions (Fig. 1). Conse-
quently, any interpretation of number densities at virtually all dmax

values for the incipient and intermediate specimens is inaccurate.
This is especially visible for the global maxima of the dmax curve.
An inspection of the precipitate size distributions Fig. 1b)

pinpoints the shortcomings of applying the MS method to the
incipient and intermediate state specimens. The distributions
show that as many as 25% of the identified clusters contain only
five scandium atoms, i.e., the minimum accepted count Nmin.
Again, this is a clear argument against using the MS method for
quantifying the early stages of precipitation in those AM
specimens.
In contrast, the scandium 1NN distribution for the dataset of the

specimen from the mature state sample is bimodal. In this case,
the MS method delivers reliable precipitate number densities as
Fig. 1a) confirms. It is reasonable to report the plateau value of the
curve as the metallurgical relevant number density for two
reasons: first, for this dmax, most scandium atoms contribute to the
precipitates rather than to the matrix. Second, for this dmax, a
potential bias in the 1NN distribution due to an accidental fusing
of solute scandium atoms in the vicinity of the precipitates is
lower compared to number densities read at larger dmax values. In
summary, these results reassure the validity of earlier findings
pertaining to the application of the maximum separation
clustering method38,64.
Figure 1b compares the size distributions for all clusters with

the distribution for exclusively those clusters in the interior of the
dataset. For the mature state, the shape of both distributions is
very similar. Individual quantile values are shifted, though, in
particular for the lower half of the curve. We can thus conclude
that two contributions affect the distributions: the truncation of
clusters by the edge of the dataset and the lower absolute
number of clusters in the mature state specimen, i.e., finite
counting effects. By contrast, for the incipient and intermediate
state the distributions are more similar because more precipitates
are included in the volume.
Given that many APT datasets may contain only a few hundred

mature clusters, quantifying also such statistical effects is relevant
uncertainty quantifying in addition to studying the effect of
method parameterization. Our work provides additional value by
delivering quasi unbiased distributions of the precipitate size (Fig.
1b)). The distributions are quasi unbiased because of the capability
to detect which clusters were truncated by the dataset edge. In
effect, the AM case study substantiates how paraprobe delivers
additional confidence and detailed uncertainty quantification.

Practicality and relevance of the methods
The numerical costs of the above analyses are summarized in Fig.
1c). Executing the parameter sensitivity study on the three
exemplar datasets for specimens of all three samples took
52min when using 36 threads. This includes all 241 MS clustering
runs per dataset, the tessellation, α-shape edge computation, and
atom-to-edge distancing. Clustering was the most costly task with
a total execution time fraction of 43.2%. With only 1.0% of the
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total elapsed time, I/O expenditures were negligible, which is
another difference compared to proprietary tools.
The supplementary methods and the supplementary refer-

ences65,66 detail the results for the other ten datasets of the AM
case study. Comparing the automatically compiled reports (in the
supplementary references65,66) shows that all specimens for each
thermo-mechanical state yield reproducible results for all three
states (incipient, intermediate, mature), respectively. The high-
throughput screening with paraprobe delivers for which cases
interpreting the precipitation state via the MS method is justified
and for which it is not. Furthermore, the tools delivered all relevant
spatial statistics, corrected for bias.
Thanks to the high-throughput approach, these analyses took

few steps: First, the writing of a Python script to specify which
datasets and analysis tasks should be executed via paraprobe-
parmsetup. Second, the running of the paraprobe tools on the
cluster. Third, the stitching together of a Python script for creating
the figures and the reports via paraprobe-autoreporter.

With the combination of trivial and non-trivial parallelism, all 13
datasets were processed in a few hours. The tools could be easily
extended to loop in the processing of other analysis tasks,
including different clustering methods of the community for
making heads-up assessments.
Immediate potential for further parallelization is available but

has not been tapped in this study. We want to emphasize that the
parameter runs were executed sequentially but each run of the
MS method multithreaded. Alternatively, the parameter runs could
be distributed trivially parallel on multiple computing nodes. This
would result in hybrid-parallelized execution.
We should mention that paraprobe implements methods for

processing point cloud datasets with additional mark data per
point. Although, exemplified here for mark data, which are specific
for APT (mass-to-charge and respective atom type label), it is
possible to process also point cloud data from other sources such
as molecular dynamics simulations or (material) point data of the
microstructure evolution modeling community67. This would

Fig. 1 We show key results of the additive manufacturing case study. Sub-figure a compares the reconstructed datasets of three of the
13 specimens. One representative dataset for each sample (incipient, intermediate, and mature) is shown. The color-coding distinguishes the
reconstructed datasets and displays their scandium atoms. On the left side the distribution of Sc-Sc nearest neighbor distances (1NN) are
compared for original (orig.) and randomized (rand.) atom type labels. On the right side the sensitivity of the cluster number density is shown
as a function of dmax, the distance between core points while querying atom neighbors with the maximum separation (MS) method. Sub-
figure b compares the distribution of cluster sizes for the specimens and with respect to edge effects for distributions, which consider only the
interior (solid lines) or all clusters (dashed lines), respectively. Sub-figure c summarizes the most time consuming parts of the computations,
exemplified for the incipient dataset.
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require, though, a modification of the paraprobe-transcoder tool
to equip paraprobe with a reader for parsing x, y, z position and
mark data from the file formats of the respective scientific
communities. Thereafter, the same processing pipeline could be
used to characterize computational geometry, spatial statistics,
and clustering.

Verification and scalability
Reliable verification and software benchmarks call for ground
truth data. Therefore, we created two groups of four synthetic
datasets (Fig. 2a), left inset). Each dataset was built as a conical
frustum with a spherical cap on top68. Using a fixed shape, the
dataset volume was scaled to contain 2 × 106, 20 × 106, 200 × 106,
and 2000 × 106 atoms, respectively. The first group contains four
datasets for defect- and noise-free synthetic aluminum single
crystals. The second group represent a copy of each dataset from
the first group. For these copies ~10% of the atoms were replaced
in total by replacing dataset volume by an ensemble of randomly
dispersed spherical Al3Sc precipitates. Details are given in the
supplementary methods.
Figure 2 summarizes the key results of the performance

assessment. Specifically, Fig. 2a) summarizes the strong-scaling
efficiency for multithreaded execution on a workstation, or single
computing node, respectively. An analysis of the individual
methods as well as the memory consumption is detailed in the
supplementary discussion and supplementary Fig. 3). To the best
of our knowledge, this is the first such assessment of multi-
threaded APT tools for such a diverse set of analysis tasks.
Paraprobe shows at least 55% strong-scaling efficiency when
using 36 threads for all tasks but clustering. The scaling limitations
for clustering are attributable to a sequential overhead, which can
become as high as 25%. One contribution to this overhead is
unavoidable because certain steps of the MS algorithm enforce
synchronization69.
For all other tasks also a few percent sequential overhead

remains although already techniques were employed to balance
dynamically the computational load. It is this overhead that results
in disproportionately lower efficiency when using more threads.
One key contribution to overhead is that the workload per atom,
such as during tessellating, typically differs. This sets a limit with

respect to how perfectly the atoms can be distributed and
processed as groups of atoms across the cores.
Figure 2b summarizes the results of combining OpenMP-

multithreaded data parallelism with process data parallelism using
the Message Passing Interface (MPI) library70. Here, we exemplify
an application for distancing the atoms to the α-shape and
processing spatial statistics for the first group of synthetic
datasets. As an example, a computing cluster with 80 nodes with
40 cores each was employed. Distances were computed for all
atoms within closer than dsrf= 10 nm to the dataset edge. Al-Al
spatial statistics (radial distribution function (RDF), kNN, with k=
1, 10, 100, and three-dimensional spatial distribution maps (SDMs))
were characterized. The radii for the regions-of-interest (ROIs)
were set to r= 10 nm for the RDF and kNN. The ROI radii for the
SDMs were set to 2 nm. SDMs were discretized in (0.025 nm)3

cubic voxels.
The results confirm in all cases that, in addition to the gains

from multithreading, MPI unlocked as large performance gains
as additional cores were commissioned. The scalability is close
to ideal, as expected for this moderate number of cores and
weak coupling of the computation. The more atoms each core
processes, the more effective the additional parallelization
layer becomes. The reason is that the overhead for any
organization of the workload gets better compensated for.
The results in Fig. 2 document the strong-scaling nature of
paraprobe. Additional details of the verification and bench-
marking is summarized in the supplementary discussion and
supplementary Figs. 2–4.
To conclude, this paper delivers a concept and box of open-

source software tools for enabling high-throughput computational
studies with atom probe tomography datasets and experiments.
Exemplified for datasets with at most two billion ions, we deliver
specific parallelized solutions for solving the following data mining
tasks:

● Build α-shapes to the entire point cloud, which does not
downsample close to the edge of the point cloud via an
original filtering algorithm.

● Compute exact atom-to-edge distances with which edge
effects for spatial statistics and precipitate size distributions
can be practically eliminated.

Fig. 2 We document strong-scaling efficiency for multithreaded and hybrid-parallel execution. The inset in a displays the synthetic
datasets. These are rendered at scale (visualized via the α-shape of the edge). For the two leftmost datasets only their upper sections are
shown to retain sufficient pixel resolution. The gray curves in a compare the strong-scaling results for different fractions of remaining
sequential overhead according to Amdahl’s law100. Sub-figure b reports elapsed time. The thin dashed lines compare to the theoretical
optimum of linearly scaling methods. Runtime differences were within the thickness of the data point symbols.
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● Fast tessellating of the entire point cloud without a need for
downsampling.

● Exemplary implementation of how to use HDF5 as an open file
format for storing APT data and metadata. Thereby, our study
shows how to achieve improved I/O speed, use better
assistance for scientific visualization, and become prepared
for studies that seek to better align with the fair data
stewardship principles.

The results document at least 55% strong-scaling multithread-
ing efficiency when using 36 OpenMP threads. With an additional
layer of MPI process data parallelism, we unlock approximately
three orders of magnitude faster processing compared to
sequential execution when using an exemplar computing cluster
with 3200 cores.

METHODS
Principle design, high-throughput workflow, and
implementation
We would like to point the reader to the supplementary methods and the
open-source material to explore in more detail the advanced aspects of the
parallelization and the individual methods of paraprobe. In summary, Fig. 3
displays the principle setup of a workflow with paraprobe. Instead of a
monolithic program, paraprobe is a collection of parallelized tools.
Targeting workstations and computer clusters, paraprobe is instructed
via Python scripts in the front-end, which write shell scripts for the back-
end tools. To assist the users with creating configuration and run files, we
developed Python classes. As an alternative route to configure the
individual tools, we developed a web-browser-based Python/Bokeh GUI71.
Hands-on examples of the Python scripts and the raw data are offered as
tutorials in the form of jupyter notebooks in the source code repository
(see code availability section). These exemplify the high-throughput
workflow for the two case studies.
The raw data of an APT experiment contains a collection of detector hit

positions, time-of-flight, and voltage curve data. For Cameca/Ametek
instruments these results are stored in proprietary container formats (RHIT
until IVAS v3.6, HITS since IVAS v3.8). There is currently no generally
working option to parse all content from such files without IVAS/APSuite.
Therefore, all analyses with paraprobe, as far as this paper is concerned,
were performed in reconstruction space. For this work, we relied on a priori
existing ranging information generated for instance with IVAS. In the
future one could inject alternatively the ranging tools from the community
(e.g., refs. 12,72) as an additional step into the workflow. Input to paraprobe
is passed via POS, EPOS, APT, RNG, or RRNG files7 using the paraprobe-
transcoder tool. Alternatively, synthetic datasets, like those used for
benchmarking, can be created for arbitrary crystal structures with the
paraprobe-synthetic tool.
We implemented paraprobe as a collection of C/C++ tools coordinated

by Python scripts. The analyses in this work were executed on two
computers: The multithreaded runs were processed with an in-house Linux
workstation with 36 cores. The hybrid runs were processed on TALOS, a
Linux computing cluster with 80 nodes with 40 cores per node. All
machines were used exclusively, threads were pinned and placed
machine-topology-aware. Details are summarized in the supplementary
methods.
Before analyzing, the point cloud is split spatially into a stack of non-

overlapping cuboidal point cloud regions. We split along the direction of
the longest dataset axis such that each region contains a quasi equal
number of N/Nthr atoms73 with N the atom total and Nthr the number of
threads. Each region administrates its own array of atoms. The memory
management of the regions was implemented via multithreading, Open
Multi-Processing (OpenMP) to be specific74. We use strategies for
advanced memory management75 and detail these in the supplementary
methods.

Quantifying the edge of the dataset
Every accurate analysis of spatial quantities for a finite dataset needs a
strategy for curing edge effects. Such can arise when inspecting the long-
range neighborhood of atoms at the edge of the dataset38,41. One strategy
could be to identify the shortest distance of an atom to the edge and use
this distance as a criterion to exclude atoms from an analysis to avoid bias.

The same strategy can be applied to precipitates when they are only
partially analyzed, i.e., truncated by the dataset edge.
One strategy to define the edge is to construct a triangle hull to the

point cloud. A variety of methods exist and have been used for APT data:
convex hulls41,76, α-shapes as a generalization of convex hulls43,77, or γ-
shapes as a generalization of α-shapes78. The benefit of α- and γ-shapes
over convex hulls is that they can account for concave sections of the
point cloud.
We offer a solution to reduce the numerical costs for processing α-

shapes. Different to previous authors, who employed downsampling or
accepted to work with a sub-set of the data only, we developed a method,
which retains the accuracy of the point cloud close to the edge.
The key observation is that most atoms in the interior of the point cloud

do not contribute a supporting vertex of a triangle to an α-shape.
Consequently, a filtering algorithm is proposed, which filters out these
interior atoms. Thereby, only the relevant atoms have to be computed. For
multi-million atom datasets and larger, there are typically at least two
orders of magnitude fewer of these relevant atoms than there are interior
atoms. This enables the processing of even the multi-hundred million atom
datasets. The details of the filtering algorithm are described in the
supplementary methods. The subsequent α-shape construction has two
steps: first, the computation of a Delaunay triangulation of the filtered
atom point cloud76,79. Second, the triangulation of α-shapes for specific α

Fig. 3 Paraprobe delivers a collection of tools for implementing
high-throughput workflows for automated post-processing of
single or collections of APT datasets. Each tool serves a specific
analysis task. Examples of tools and key processing steps are shown
to the right. All results and metadata are exchanged via HDF5 files. A
typical workflow has three steps: First, the desired workflow (of
analysis tasks) is described via writing a Python script using the
paraprobe-parmsetup classes. The script creates the necessary
configuration files and a shell script for executing the workflow.
Second, the analysis tasks are executed by individual paraprobe
tools using a workstation or computer cluster. The flowchart to the
left shows a typical combination of such analysis tasks. Third, the
results are post-processed through executing a Python script using
the paraprobe-autoreporter classes. These classes parse the meta-
data and results from their respective HDF5 files and create the
desired figures alongside a PDF report. The images on the right side
detail the functioning of the data splitting and show a slice of an α-
shape with which the dataset edge is triangulated. The bottom
image shows a tessellated dataset. Here, also the guard zones are
visualized (light-blue wireframes). The guard zones are used to
ensure a consistent computing of Voronoi cells at the boundary of
each dataset region.
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values. Both steps were executed sequentially. In the future parallel
implementations of these steps could be added.

Atom-to-edge distancing
An α-shape offers a triangulated representation of the edge of the dataset.
This enables the computation of atom-to-edge distances. Approximate and
exact analytical methods can be used. Paraprobe computes distances d
analytically. These distances can then be evaluated against a threshold
distance dsrf. Such a threshold can define the thickness of a skin to quantify
the dataset edge. The skin starts at the dataset edge and extends inwards
to identify which atoms are counted as neighbors but should not be visited
with own regions-of-interest to eliminate bias.
The key challenge when computing exact distances is that potentially a

large number of atom-to-triangle tests have to be evaluated. Therefore,
paraprobe implements a multi-step filtering algorithm, which reduces the
number of atom-to-triangle tests per atom: First, a coarse distance is
evaluated. Second, this value is used to identify a smaller set of candidate
triangles via an R-tree80,81 of the α-shape. Details are given in the
supplementary methods. All distancing works multithreaded. Atoms are
machined off region after region. For each region all threads process atoms
via dynamically-scheduled multithreading. Based on this general and fast
strategy to compute distances between atoms and triangles, we are
currently extending paraprobe to enable also the computation of distances
to iso-surfaces and geometrical primitives.

Descriptive and two-point spatial statistics
Spatial statistics82 characterize the spatial environment of points. Different
probability density functions and their distributions are commonly used for
APT data. Examples are kNN, i.e., the distribution of distances between
atoms of a certain type and their individual kth-nearest neighbor (of a
certain type); or the RDF83,84. RDFs link to methods for small-angle X-ray
scattering35,63,85. RDF and kNN represent annularly integrated representa-
tives of the more general, so-called two-point (spatial) statistics86.
These are functions that quantify three-dimensional probability mass

values, which describe how many neighboring atoms of a particular type
the atoms have in a particular direction r and radial distance R. Serial
sections of these functions in the central atom’s plane of location are
better known by atom probers as SDMs87. Paraprobe implements all the
above-mentioned spatial statistics with a customizable binning with
rectangular transfer functions and hybrid parallelization.
We refer to a single combination of central atoms and (their) neighbors

as a spatial statistics query task. Paraprobe enables users to a priori
formulate a list of combinations of multiple statistics, multiple query task
combinations, and multiple atom types. At runtime, this task list is
machined off with an internal batch queue processor, whose details are
explained in the supplementary methods.

Detection of clusters or precipitates
Clustering algorithms applied to APT data38,63,88 enable the quantification
of the number density and the distribution of sizes for phase regions or
clusters, precipitates respectively, if these phase regions are crystalline. For
reasons of practicality, the terms cluster and precipitate are used
interchangeably in this work. A variety of clustering methods has been
reported7,38–40,89. Especially variants and generalizations of the DBScan90

clustering algorithm, such as the maximum separation (MS) method37,64,
the core-linkage38, or the hierarchical DBScan40 method are employed for
APT data. Given the importance of DBScan variants, we decided to focus in
this work on their potential for parallelization. Paraprobe thus executes the
OpenMP-parallelized DBScan implementation of Götz et al.69.
We modified their code to enable batch execution of individually

multithreaded DBScan runs. As a specific variant of DBScan, the MS
method requires the calibration of parameters: the core point distance
dmax (equivalent to ϵ in the original DBScan reference90), the number of
neighboring points within dmax distance to call the point a core point (here
k= 1), and the minimum number of atoms to consider a cluster as a
significant one Nmin. All spatial queries of atoms or triangles use efficient
spatial indices to reduce unnecessary queries and reduce the costs of
individual queries. The details are explained in the supplementary
methods.

Parallelized volume tessellations
A tessellation is an overlap-free distributing of a space76 for a given set of
points and a mathematical space distributing rule. The rule that defines a
Voronoi tessellation, i.e., which assigns each position in space to the
individually closest member of the point cloud, yields several useful results
for APT data: a defined volume, and thus concentration value per
atom91,92, three-dimensional Voronoi cells with a topology, which are
useful for cluster identification92, and cell facets, with which microstruc-
tural features67,92,93 can be reconstructed.
Despite these benefits, the construction of tessellations for APT datasets

with more than a few million atoms faced so far unsolved challenges
because existent computational geometry libraries were used sequentially
and out-of-the-box. Paraprobe breaks with this strategy. Instead, we build
on a solution from the cosmology community: the key idea is to split the
tessellation task first into multiple smaller tessellations. Second, these are
fused at the edges. Following this idea of Peterka and coworkers94,
paraprobe splits the tessellation of the entire point cloud into as many
tessellations as there are regions. Now these regions are independent and
thus processable via multithreading. For this purpose, we implemented a
multithreaded wrapper around the Voro++ library. Each thread processes
one region.
Guard zones were attached on either side of a region and exact partial

copies of the point clouds from the adjoining regions copied to ensure that
also the cells at the region edge are computed with correct individual
shapes. Figure 3 shows an example of these guard zones (light-blue
wireframes) and the resulting tessellation for six threads. Additional
implementation details are described in the supplementary methods.

Efficient storing and sharing of data and metadata via HDF5
File formats with open specifications offer a transparent way for storing
APT data and metadata. We are convinced that examples like the
Hierarchical Data Format (HDF5)95 offer a more performant tool than the
traditional formats and I/O strategies, which the APT community applied in
the past. In concert with open metadata standards plus a to be developed
ontology, this enables the APT community to store and align their
computational workflows better with the aims of the fair data stewardship
principles6,57. Interestingly, these practical advantages remained so far
virtually unexplored for APT.
Therefore, we implemented a proof-of-concept how metadata, via HDF5,

could be used for managing post-processed data and metadata within
APT, also to support activities of the International Field Emission Society
Technical Committee. HDF5 has advantages over traditional file formats:
the source code is open, the library offers in-place compression
functionality, and is optimized for both sequential and distributed-
memory parallel I/O. Interfaces for many programming languages exists
for accessing HDF5 to help organizing data. For these reasons, paraprobe
stores all output in HDF5 files.

Experiments and datasets of the case studies
We analyzed specimens from two alloy design case studies, which cover
typical examples of the context in which APT measurements are
embedded when answering materials science questions. It is common in
such studies to prepare multiple specimens for a given thermo-mechanical
state because on the one hand specimens can fracture early during an APT
experiment, and thus create insufficient atom count, and on the other
hand it is good practice to assure reproducibility between the repeat
specimens (at least to the level it is practically possible for a method that
probes the nanoscale). The first case study contains specimens from
additively-manufactured samples of a research project on characterizing
the effects of intrinsic reheating on the precipitate population during AM
operations. The specimens contained clusters and precipitates in different
growth states. These states are referred to as the incipient, the
intermediate, and the mature state, respectively (Fig. 1). We chose these
terms to distinguish the specimens because they reflect that the
precipitation process is in different stages with respect to how much
solute concentration remains left in the matrix in front of the precipitates.
The samples in the incipient and intermediate state were produced via

directed energy deposition (DED)96 from an Al− 0.49Sc− 0.45Si (wt.%)
alloy in the as-produced state. Clusters in the DED sample formed in
response to the intrinsic reheating of the deposited layers during AM.
Multiple specimens were taken from the bottom and the top parts of the
sample, yielding the incipient and the intermediate states, respectively.
The sample in the mature state originates from an Al−0.44Sc−0.02Si (wt.
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%) alloy, which was processed via laser powder bed fusion (L-PBF)96. After
building by AM, the mature state sample was heat-treated at 350 °C for
10 h. In response to this aging treatment, the precipitates grew to an
average diameter of 20 nm approximately. The specimens were prepared
with a lift-out procedure after xenon ion milling with an FEI Helios PFIB
dual-beam focused ion beam scanning electron microscope97.
Characterizing the number density of scandium-bearing precipitates and

their sizes, was the specific aim of the AM case study. Such pieces of
information about the nanochemistry serve typically as input for
formulating mean-field kinetic models98. The presence of cluster of
different diameter and non-negligible scandium and silicon content in
solid solution creates the need to quantify the uncertainties in the number
density and the size distributions. This should be best practice for every
such alloy design study with APT, regardless which particular method for
an analysis task, here clustering, one employs. We exemplify such high-
throughput uncertainty quantification for the maximum separation
method37,64.
First, an α-shape was computed for each dataset via filtering with cubic

bins dbin= 0.5 nm. Thereafter, nearest neighbor (1NN) spatial statistics
were characterized for Sc-Sc using spherical regions-of-interest (ROIs) with
r= 5 nm radius. ROIs were placed at scandium atoms with at least dsrf ≥
2.0 nm distance to the dataset edge. Statistics were computed for original
(orig.) and randomized (rand.) atom type labels. Uncertainties due to
parameter sensitivities of the maximum separation method were
quantified by probing 241 linearly spaced individual runs. The core point
distances dmax ranged between 0.2 nm and 5.0 nm with 0.02 nm step.
Clusters with less than Nmin < 5 were not considered. Tessellations were
built for all atoms. The Voronoi cells of atoms within dero < 1.0 nm distance
to the dataset edge were eroded. The number of scandium atoms ranged
from 8.64 × 104 to 6.74 × 105. Further details are documented in the
settings files of the supplementary reference65.
As the second case study we analyzed Al-Zn-Mg-Cu specimens from

Zhao et al.35, seven specimens in total. The experimental methods and
reconstruction protocols are detailed in the original paper. The case study
quantifies the matrix and precipitate concentrations for zinc, magnesium,
and copper solutes in an effort to understand better the artificial aging
response in such 7XXX series alloys with aerospace applications. The
authors of the original study35 discussed therein a method, which post-
processes several spatial statistics (RDF, and 1NN) for each type of solute.
The motivation behind this is to explore links between spatial correlation
functions from small-angle scattering and those used in APT35,63,85. The
main practical challenge is that large ROI radii (2.5 nm to 10 nm and
beyond) are probed. With IVAS this is known to be particularly costly. Also,
due to the lack of a documentation how the above spatial statistics in IVAS
are in detail computed, it is essential to employ rigorous strategies for the
removal of edge effects. Paraprobe solves the above analysis tasks not only
faster but also with rigorous uncertainty quantification. All detailed settings
are given in the supplementary reference66.

DATA AVAILABILITY
All datasets, code, and results of the additive manufacturing65 and the Al-Zn-Mg-Cu66

case studies are offered open-source. This includes the reconstructed APT datasets as
POS/EPOS files, the processed results, and the Python source code for generating the
associated workflows. Python scripts were developed (paraprobe-parmsetup) to
generate the input for running the paraprobe tools. Python scripts were also
developed (paraprobe-autoreporter) for composing figures and creating automatic
PDF reports from the HDF5 files of the tools. To help potential users with setting up
such scripts, we wrote Jupyter-notebook-based tutorials in the online documenta-
tion. We have split the repository, for practical reasons, into the configuration,
settings, input POS/EPOS, and essential results files99. The entire repository of
compressed data from all benchmarks occupies several terabytes because they
include the geometry of every cell of the multi-hundred million atom synthetic
datasets. These data are available from the authors upon serious request.

CODE AVAILABILITY
The source code of paraprobe and a documentation is maintained online: • http://
gitlab.mpcdf.mpg.de/mpie-aptfim-toolbox/paraprobe • http://paraprobe-toolbox.
readthedocs.io The repository contains also CPU- and GPU-parallelized tools for atom
probe crystallography, which will be assessed in a future study62.
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